

Complete device data (Sensor-fitting S077 + transmitter SE32)	
Pipe diameter Thread connection Flange connection	DN15...DN100 ½"; 1"; 1½"; 2"; 3" (G or NPT) 25; 40; 50; 80 or 100 mm DIN PN16 flange 1"; 1½"; 2"; 3" or 4" ANSI 150LB flange
Measuring range Viscosity > 5 mPa .s Viscosity $<5 \mathrm{mPa}$.s	$2 \ldots 1200 \mathrm{l} / \mathrm{min}(0.53 . . .320 \mathrm{gpm})$ $3 . . .616 \mathrm{I} / \mathrm{min}(0.78 \ldots 320 \mathrm{gpm})$
Fluid temperature with body in aluminium / in stainless steel	$-20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176{ }^{\circ} \mathrm{F}\right) /-20 \ldots+120^{\circ} \mathrm{C}\left(-4 \ldots+248^{\circ} \mathrm{F}\right)$
Fluid pressure max. DN15 DN25 / DN40 or DN50 DN80 / DN100	55 bar (798.05 PSI) (threaded process connection) 55 bar (798.05 PSI) ${ }^{11} / 18$ bar (261.18 PSI) 12 bar (174.12 PSI) / 10 bar (145.1PSI)
Viscosity	1 Pa.s max. (higher on request)
Measurement deviation ${ }^{\text {2 }}$	$\pm 1 \%$ of the measured value (if "standard" K-factor is used) $\pm 0.5 \%$ of the measured value (if "specific" K-factor is used, on label of the product)
Repeatability	$\pm 0.03 \%$ of the measured value
Electrical data	
Power supply	filtered and regulated $12 \ldots 36 \vee D C \pm 10 \%$
Current consumption	$\leq 90 \mathrm{~mA}$ (without load)
Protection	Reversed polarity of DC: protected Short circuit: protected for transistor outputs
Output Transistor	NPN and/or PNP (configurable), open collector, 700 mA max., 500 mA max. per transistor if both transistor outputs are wired, $0 \ldots 300 \mathrm{~Hz}$ NPN-output: 0.2... 36 V DC PNP-output: power supply
Relay	$3 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}$ or $3 \mathrm{~A} / 30 \mathrm{~V}$ DC; [3 A/48 V AC or $3 \mathrm{~A} / 30 \mathrm{~V} D C]^{3)}$
Process value Response time (10 \%...90 \%)	$4 \ldots 20 \mathrm{~mA}$, galvanic insulation, max. loop impedance: 1300Ω at $36 \mathrm{~V} \mathrm{DC;} 1000 \Omega$ at 30 V DC; 700Ω at 24 V DC; 450Ω at $18 \mathrm{VDC} ; 200 \Omega$ at 12 V DC; 3 sec with filter 2 (default setting)
Uncertainty of measurement (4... 20 mA output)	± 0.5 \%
Standards, directives and certifications	
Protection class	IP65 (according to EN 60529) with device wired and connectors mounted and tightened
Standards and directives C $€$ Pressure (S077 sensor-fitting, DN15.. DN100, in aluminium or stainless steel)	The applied standards, which verify conformity with the EU Directives, can be found on the EU Type Examination Certificate and/or the EU Declaration of conformity (if applicable) Complying with article 4, §1 of 2014/68/EU directive*
Certification (only for SE32) UL-Recognized for US and Canada $\mathbf{N T}_{\text {us }}$	UL61010-1 + CAN/CSA-C22.2 No.61010-1
Specific technical data of UL-recognized products for US and Canada	
Ambient temperature	$0 \ldots+40^{\circ} \mathrm{C}$ (+32... $\left.104{ }^{\circ} \mathrm{F}\right)$
Height above sea level	max. 2000 m
Intended for an inner pollution	Grade of pollution 2 according to EN 61010-1
Installation category	Category I according to UL61010-1

${ }^{1)}$ or in accordance to the value of the used flanges
${ }^{2)}=$ "measurement bias" as defined in the standard JCGM 200:2012
${ }^{3)}$ if $4 \ldots 20 \mathrm{~mA}$ and relay
!
If the device is mounted in a humid environment or outside, then the maximum voltage allowed is $\mathbf{3 5} \mathbf{V}$ DC instead of 36 V DC.

* For the 2014/68/EU pressure directive, the device can only be used under the following conditions (depends on max. pressure, pipe diameter and fluid).

Type of Fluid	Conditions
Fluid group 1, article 4, §1.c.i	$\mathrm{DN} \leq 25$
Fluid group 2, article 4, §1.c.i	$\mathrm{DN} \leq 32$ or
Fluid group 1, article 4, §1.c.ii	$\mathrm{DN} \leq 25$ or
Fluid group 2, article 4, §1.c.ii	$\mathrm{PN} \pm \mathrm{DN} \leq 2000$

Operation and display

The device can be calibrated by means of the K-factor (conversion coefficient), or via the Teach-In function. User adjustments, such as engineering units, output, filter, bargraph are carried out on site.

Indication in operating mode/Display
- measured flow
- high threshold value
- low threshold value
\section*{Parameter definition}
- engineering units (International measuring units)
- K-factor/Teach-In function
- selection of switching mode: window, hysteresis (see main features)
- selection of threshold value (see main features)
- delay
- filter
- 10-segment bargraph (select min. and max. value)
- Password protects the access to the menu
- switching threshold test with flow simulation
- Calibration of the 4... 20 mA current output

To scroll up the menu

or increase a value | 2-line large digital display |
| :--- |
| with 4 characters each |
| (4 digital characters and |
| 4 alphanumeric characters) |

Main Features

SE32 with standard On/Off output

- Configurable delay before switching
- Possible outputs depending on the version: relay, transistor NPN, transistor PNP

SE32 with current output for the measurement value

- 4... 20 mA output
$-4 . . .20 \mathrm{~mA}$ output + relay output

Design and operating principle

The device SE32 + S077 is made up of a compact INLINE sensor-fitting (S077) equipped with a sensor with integrated measurement oval rotor and a transmitter (SE32) with display.

When liquid flows through the pipe, the rotors turn. This rotation produces a measuring signal in the associated hall effect sensor. The frequency and amplitude are proportional to the flow. The volume of the fluid being transferred in this way is exactly

A conversion coefficient, specific to each meter size, enables the conversion of this frequency into a flow rate. The standard K-factor depending on the meter size is available in the instruction manual of the sensor-fitting S077, or to improve the measurement deviation, a specific Kfactor is given with each device on its label.

The electrical connection is provided via a cable plug according to EN 175301-803 and/or a M12 multipin connector.

The sensor-fitting can be installed in any orientation as long as the rotor shafts are always in a horizontal plane (see figures to the right).

The pipe must be filled with liquid and free from air bubbles. Avoid cleaning the system with air pressure to prevent damage and to prevent damage from dirt or foreign matter we strongly recommend the installation of a $250 \mu \mathrm{~m}$ filter as close as possible to the sensor fitting.

The transmitter (SE32) is quickly and easily connected to the sensorfitting (S077) by means of a quarter turn.

Dimensions [mm]

Transmitter SE32

Flowmeter SE32 + S077

DN15	DN25	DN40	DN50	DN80	
	Threaded connection				
	DN25	DN40	DN50	DN80	DN100
		Flanged connection			

Ordering information and chart for a complete flowmeter/threshold detector

A complete flowmeter/threshold detector consists of a compact SE32 flow transmitter and a S077 INLINE sensor-fitting.
The following information is necessary for the selection of a complete device:

- Article no. of the desired compact SE32 flow transmitter (see ordering chart, below)
- Article no. of the selected S077 INLINE sensor-fitting (see separate data sheet) More
\rightarrow You have to order the two components separately.
When you click on the orange box "More info.", you will come to our website for the resp. product where you can download the datasheet.

Type SE32 compact flow transmitter

Specification	Voltage supply	Output	UL certification	Electrical connection	Article no.
Flow threshold detector	12... 36 V DC	1 x transistor NPN	No	Cable plug EN 175301-803*	436474 !
		1 x transistor PNP	No	Cable plug EN 175301-803*	434871 !
		2 x transistors NPN/PNP	No	Free positionable 5 pin M12 male fixed connector	436473 !
			c71 Recognized	Free positionable 5 pin M12 male fixed connector	553431 . .
		Relay	No	Free positionable 5 pin M12 male fixed connector and cable plug EN 175301-803*	436475 .
Flow transmitter	12... 36 V DC	$4 \ldots 20 \mathrm{~mA}+\text { relay }$	No	8 pin M12 male fixed connector and cable plug EN 175301-803*	560547 !
			No	Free positionable 5 pin M12 male fixed connector and cable plug EN 175301-803*	560402 !
		4... 20 mA	No	Free positionable 5 pin M12 male fixed connector	560403 !

* Europe/Asia (G/Rc): M16 x 1.5 mm cable plug

USA/CDN (NPT): NPT ½" cable plug

Ordering chart - accessories (has to be ordered separately)

Specification	Article no .
5 pin M12 female straight cable plug with plastic threaded locking ring, to be wired	917116 !
5 pin M12 female straight cable plug moulded on cable (2 m, shielded)	438680 !
8 pin M12 female straight cable plug with plastic threaded locking ring, to be wired	444799 !
8 pin M12 female straight cable plug moulded on cable (2 m, shielded)	444800 !
Cable plug EN 175301-803 with cable gland (Type 2508)	438811 !
Cable plug EN 175301-803 with NPT ½" reduction without cable gland (Type 2509)	162673 !

Interconnection possibilities with other Bürkert devices

